PI CERAMIC

Lead-Free Piezoceramic Materials

Lead-Free Piezoceramic Development at PI Ceramic Potassium Sodium Niobate (KNN) & Bismuth Sodium Titanate (BNT)

Lead zirconate titanate (PZT) is the gold standard for performance and reliability in most piezoelectric applications since its invention more than 70 years ago. However, since the early 2000s the European Commission encourages the industry in Europe to look for alternative material systems via the Restriction of Hazardous Substances Directive (RoHS). The aim is to reduce environmental pollution from lead in electronic waste.

One way to get closer to this goal is to develop and use lead-free piezoelectric materials. PI Ceramic has been working on this theme for a long time and is working on alternatives to lead-containing materials. During the development the material systems bismuth sodium titanate (BNT) and potassium sodium niobate (KNN) have proven to be the most promising candidates for industrial use. Ongoing work with regards to different customer applications has resulted in various variants of these material systems with different levels of technological maturity. Our many years of experience enable us to meet most of our customers' requirements in terms of geometries.

Especially in resonant applications, lead-free piezoceramics can be an alternative to lead-containing materials. First positive results can be demonstrated for ultrasonic nebulizers and power ultrasonic transducers as well as sensors. It is particularly worthwhile testing the performance of lead-free alternatives when designing new or redesigning existing devices.

Lead-Free Piezoceramic Development at PI Ceramic Sample Applications

	Application	PIC700	PIC701	PIC753	PIC758
Medical	Nebulizers			XX	
Technology	Sonication & Lysis				XX
	Mixing & Dispersion				XX
	Therapeutic & Surgical Ultrasound				Х
	Air Bubble Detection	XX	Х		
	Flow Metering	XX	Х		
dustrial	Material Processing				Х
pplications	Flow Metering	XX	Х		
	Hydro Acoustics			Х	Х
	Level Sensors			Х	
	Ultrasonic Cleaning				Х
	Non-Destructive Testing	Х	Х		
	Ultrasonic Sensors			Х	
	Ultrasonic Motors				Х

Potassium Sodium Niobate (KNN) Performance

KNN components can be easily soldered and glued and have better planar or transversal piezoelectric properties compared to BNT components. They can therefore be used as an alternative to PZT components in:

- air ultrasonic sensors
- power ultrasonic transducers
- nebulizer units
- ultrasonic motors.

For the manufacturing of lead-free piezo components, PI Ceramic uses only raw materials that have a better ecological footprint than PZT.

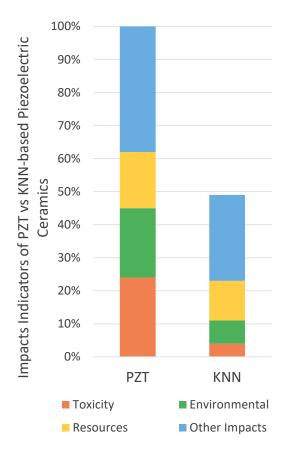
Material datasheet for download: <u>Ceramic</u> <u>Material Data</u>

				PIC7531	PIC758 ²
Physical &	Density	ρ	g/cm ³	4.8	4.8
dielectric	Curie temperature	T _c /T _d	°C	300	290
properties	Coercive field strength	Ec	kV/mm	1.1	1.2
	Relative permittivity polarization	ε ₃₃ ^т / ε ₀		1341	850
	Relative permittivity \perp to polarization	11 0		1222	950
	Dielectric loss factor	tan δ	10-3	13	20
Electro- mechanical Properties	Coupling factor	k _p		0.53	0.43
		k _t		0.45	0.42
		k ₃₁		0.3	0.27
		k ₃₃		0.59	0.57
		k ₁₅		0.58	0.55
	Piezoelectric charge coefficient	d ₃₁	10 ⁻¹² C/N	-118	-75
		d ₃₃	10 ⁻¹² C/N	241	170
		d ₁₅	10 ⁻¹² C/N	316	287
	Piezoelectric voltage coefficient	g ₃₁	10 ⁻³ Vm/N	-9.9	-9.9
		g ₃₃	10 ⁻³ Vm/N	20.0	22.5
Acousto- mechanical properties	Frequency coefficient (fs)	N _p	Hz∙m	2869	
		N_1	Hz∙m	2065	2296
		N ₃ *	Hz∙m	2445	2582
		N _t *	Hz∙m	2739	3048
		N ₅ *	Hz∙m	1555	1315
	Elastic complience coefficient	S_{11}^{E}	10 ⁻¹² m ² /N	12.2	9.8
		S_{33}^{E}	10 ⁻¹² m ² /N	13.6	11.6
	Elastic stiffness coefficient	C_{33}^{D}	$10^{10} N/m^2$	17.2	17.8
	Mechanical quality factor	Q _m		200	585

Modified materials on request. The materials are not yet approved for full scale production. The reliability of leadfree materials must be re-evaluated in each application case.

¹ Preliminary data, subject to change ² Material under development

The following values apply approximately for lead-free materials from PI Ceramic:


Specific heat capacity: WK KNN = approx. 420 J kg⁻¹ K⁻¹

Specific thermal conductivity: WL KNN = approx. 2.5 W $m^{-1} K^{-1}$

The data is determined using test pieces with the geometric dimensions laid down in EN 50324-2 standard and are typical values. All data provided is determined 24 h to 48 h after the time of polarization at an ambient temperature of 23 ± 2 °C. A complete coefficient matrix of the individual materials is available on request. If you have any questions about the interpretation of the material characteristics, please contact PI Ceramic.

Sustainability of Potassium Sodium Niobate (KNN) Better than PZT when Choosing the Right Raw Materials

The ecological footprint of KNN has been subject of various discussions in research as well as in companies within in recent years. Initial results have shown an even worser footprint than PZT due to the poor valuation of the raw material niobium oxide when chemically prepared.^{1,2} Later studies dealt with the different fabrication methods of niobium oxide. Mining fabrication has been shown to improve the global warming factor as well as human carcinogenic toxicity a lot.³ Thus, the overall environmental impact of KNN materials is less than half of PZT.⁴ This factor could be further improved by advanced fabrication technologies, which are under investigation.

¹ Ibn-Mohammed. T.; Koh, S.C.L.; Reaney, I.M.; Sinclair, D.C.; Mustapha, K.B.; Acquaye, A.; Wang, D. 2017: Are lead-free piezoelectrics more environmentally friendly? MRS Communication 7: 1-7.

² Ibn-Mohammed. T.; Reaney. I.M.; Koh. S.C.L.; Acquaye. A.; Sinclair. D.C.; Randall. C.A.; Abubakar. F.H.; Smith. L.; Schileo. G.; Ozawa-Meida. L. 2018: *Life cycle assessment and environmental profile evaluation of lead-free piezoelectrics in comparison with lead zirconate titanate*. Journal of the European Ceramic Society 38(15): 4922-4938. ³ Da Silva Lima, L.: Aburcanga, P.A.E.: do Soura Amaral, T.: do Tarro Goncalvos Nolli, P.: Dowulf, L. 2022: Life cycle assessment of forceniablum and nishium oxides: Overativing the

³ Da Silva Lima. L.; Alvarenga. R.A.F.; de Souza Amaral. T.; de Tarso Gonçalves Nolli. P.; Dewulf. J. 2022: *Life cycle assessment of ferroniobium and niobium oxides: Quantifying the reduction of environmental impacts as a result of production process improvements.* Journal of Cleaner Production 348(18): 131327.

⁴ Wu, Y.; Soon, P-S.; Lu, J-T.; Zhou, J.; Liu, Y-X.; Guo, Z.; Wang, K.; Gong, W. 2024: Life cycle assessment of lead-free potassium sodium niobate versus lead zirconate titanate: Energy and environmental impacts. EcoMat 6(5): 12450.

Total impact indicators of PZT and KNN-based piezoceramics.⁴

Bismuth Sodium Titanate (BNT) Performance

BNT materials are particularly well suited for thickness oscillation applications and perform well in applications like air bubble detection and flow sensor technology.

For applications that utilize planar vibration, however, BNT materials are not suitable.

The PI Ceramic BNT materials feature a high depolarization temperature. Therefore, unlike many other materials on the market, they can be processed by low-melting soldering or with thermosetting adhesives.

Material datasheet for download: <u>Ceramic</u> Material Data

				PIC700	PIC701
Physical &	Density	ρ	g/cm ³	5.7	5.7
dielectric	Depolarization temperature	T _c /T _d	°C	190	230
properties	Coercive field strength	Ec	kV/mm	2.8	3.9
	Relative permittivity polarization	ε ₃₃ ^т / ε ₀		750	542
	Relative permittivity ⊥ to polarization	11 . 0		800	629
	Dielectric loss factor	tan δ	10-3	30	30
Electro- mechanical Properties	Coupling factor	k _p		0.13	0.14
		k _t		0.45	0.39
		k ₃₁		0.08	0.09
		k ₃₃		0.41	0.37
		k ₁₅		0.31	0.32
	Piezoelectric charge coefficient	d ₃₁	10 ⁻¹² C/N	-20	-17
		d ₃₃	10 ⁻¹² C/N	120	71
		d ₁₅	10 ⁻¹² C/N	120	108
	Piezoelectric voltage coefficient	g ₃₁	10 ⁻³ Vm/N	-3.3	-3.5
		g ₃₃	10 ⁻³ Vm/N	15	15
Acousto- mechanical properties	Frequency coefficient (fs)	Np	Hz∙m	3000	3071
		N_1	Hz∙m	2270	2302
		N ₃ *	Hz∙m	2240	2403
		N _t *	Hz∙m	2340	2503
		N ₅ *	Hz∙m	1470	1535
	Elastic complience coefficient	S ₁₁ ^E	10 ⁻¹² m ² /N	8.5	8.3
		S ₃₃ ^E	10 ⁻¹² m ² /N	9.1	7.6
	Elastic stiffness coefficient	C ₃₃ D	10 ¹⁰ N/m ²	15.2	13.5
	Mechanical quality factor	Q _m		100	100

Modified materials on request. The reliability of lead-free materials must be re-evaluated in each application case.

Preliminary data, subject to change

The following values apply approximately for lead-free materials from PI Ceramic:

Specific heat capacity: WK BNT = 101 J kg⁻¹ K⁻¹

Specific thermal conductivity: WL BNT = $1.4 \text{ W m}^{-1} \text{ K}^{-1}$

The data is determined using test pieces with the geometric dimensions laid down in EN 50324-2 standard and are typical values. All data provided is determined 24 h to 48 h after the time of polarization at an ambient temperature of 23 ± 2 °C. A complete coefficient matrix of the individual materials is available on request. If you have any questions about the interpretation of the material characteristics, please contact PI Ceramic.

Physik Instrumente

PI Ceramic GmbH Lindenstraße 07589 Lederhose Germany Phone +49 36604 882-0 E-Mail info@piceramic.de

Please visit us at: www.piceramic.com

©2024 PI Ceramic GmbH The use of these texts. pictures and drawings is only permitted with the permission of PI and only permitted with reference to the source.

